Topo-Bathymetric Airborne Laser Scanning System

with Online Waveform Processing and Full Waveform Recording

RIEGL VQ-880-GII

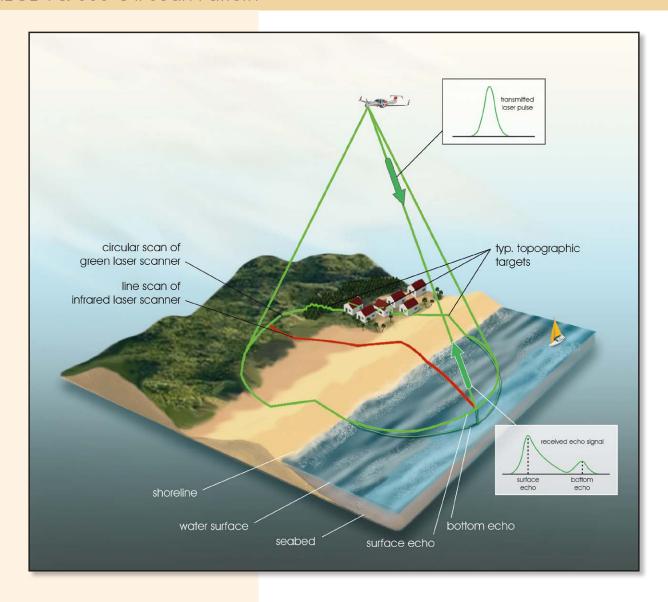
- designed for combined topographic and bathymetric airborne survey
- green laser scanner with up to 700kHz measurement rate
- IR laser scanner with up to 279kHz measurement rate and improved ranging performance
- high accuracy ranging based on echo digitization and online waveform processing with multiple-target capability
- multiple-time-around processing for straightforward mission planning and operation
- concurrent full waveform output for all measurements for subsequent full waveform analysis for the green channel
- high resolution due to high measurement rate
- integrated inertial navigation system
- up to two integrated digital cameras
- compatibility with stabilized mounting platforms

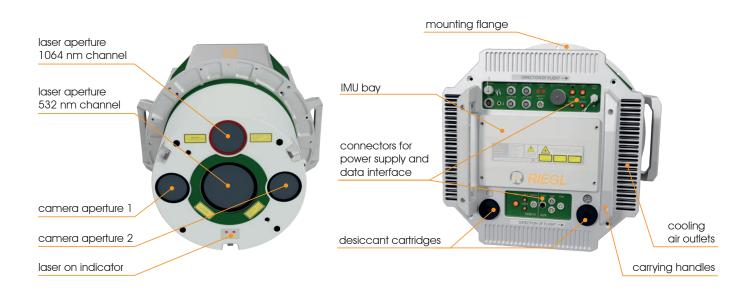

The design of the RIEGL VQ-880-G II topo-bathymetric airborne laser scanning system allows flexible application of the integrated, factory-calibrated high-end IMU/GNSS system and of up to two cameras to meet specific requirements. Complemented by a RIEGL data recorder, the RIEGL VQ-880-G II LiDAR system is ready for straightforward installation on various platforms. The tubular design makes it specifically apt for integration into stabilizing mounts.

The RIEGL VQ-880-G II carries out laser range measurements for high resolution surveying of underwater topography with a narrow, visible green laser beam, emitted from a powerful pulsed laser source. Subject to clarity, at this particular wavelength the laser beam penetrates water enabling measurement of submerged targets.

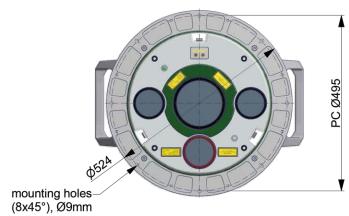
The distance measurement is based on the time-of-flight measurement with very short laser pulses and subsequent echo digitization and online waveform processing. To handle target situations with most complex multiple echo signals, beside the online waveform processing the digitized echo waveforms can be stored on the RIEGL solid state data recorder for subsequent off-line waveform analysis.

The laser beam is deflected in a circular scan pattern and hits the water surface at a nominally constant incidence angle.


The VQ-880-GII comprises a high precision inertial measurement sensor for subsequent precise estimation of the instrument's exact location and orientation. An infrared laser scanner is integrated to supplement the data gained by the green laser scanner. Up to two highresolution digital cameras provide RGB image data and/or IR image data. The rugged internal mechanical structure together with the dust- und splash water proof housing enables long-term operation on airborne platforms and is compatible with stabilizing mounts.

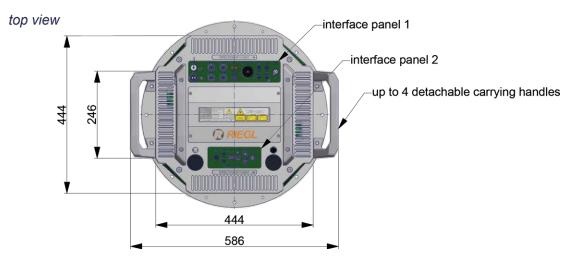

- coastline and shallow water mapping
- acquiring base data for flood prevention
- measurement for aggradation zones
- habitat mapping
- · surveying for hydraulic engineering
- hydro-archeological-surveying

RIEGL VQ-880-G II Scan Pattern



RIEGL VQ-880-G II Elements of Function and Operation

side view


bottom view

front view

Ø409

all dimensions in mm

Ø402

RIEGL VQ-880-G II Technical Data

Export Classification

The Topo-Bathymetric Airborne Laser Scanner VQ-880-G II has been designed and developed for commercial topographic, hydrographic and bathymetric surveying applications.

Laser Product Classification

Class 3B Laser Product according to IEC60825-1:2014

The following clause applies for instruments delivered into the United States: Complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed.3., as described in Laser Notice No. 56, dated May 8, 2019.

The instrument must be used only in combination with the appropriate laser safety box.

NOHD 1)

1) NOHD ... Nominal Ocular Hazard Distance, based upon MPE according to IEC60825-1:2014, for single pulse condition

The VQ-880-G II is subject to export restrictions as set up by the Wassenaar Arrangement. It is classified as dual-use good according to position number 6A8j3 of the official Dual-Use-List to be found on site http://www.wassengar.org

Within the European Union, Regulation (EU) No. 2021/821 implements the export restrictions of the Wassenaar Arrangement. The corresponding position number is 6A008j3

600 kHz

950 m

1600 m

850 m (2790 ft.)

900 kHz

 $800 \, \text{m}$

1300 m

700 m (2290 ft.)

180 m²⁾

2) NOHD is determined by green laser scanner, @ 80 lps, 1.1 mrad, 550 kHz; NOHD of the infrared laser scanner: 60 m @ 900 kHz

INFRARED LASER CHANNEL

Range Measurement Performance

Measuring Principle

time of flight measurement, echo signal digitization, online waveform processing

Max. Measurement Range 3) 4) 5) @ Laser Pulse Repetition Rate

natural targets p≥20 % natural targets p≥60 % Max. Operating Flight Altitude 6) Above Ground Level (AGL)

Minimum Range 7) Accuracy 8) 10)

Precision 9) 10)

Laser Pulse Repetition Rate 11) 12)

Max. Effective Measurement Rate 6) 12)

Echo Signal Intensity Number of Targets per Pulse Laser Wavelength Laser Beam Divergence

Laser Beam Footprint (Gaussian Beam Definition)

300 kHz

1300 m

2100 m

1100 m (3600 ft.)

10 m 25 mm 25 mm

up to 900 kHz

150 kHz

1800 m

2800 m

1600 m (5250 ft.)

47 000 meas./sec (@ 150 kHz PRR & 40° FOV) 93 000 meas./sec (@ 300 kHz PRR & 40° FOV) 186 000 meas./sec (@ 600 kHz PRR & 40° FOV) 279 000 meas./sec (@ 900 kHz PRR & 40° FOV)

for each echo signal, high-resolution 16 bit intensity information is provided practically unlimited (details on request) 13)

1.064 nm (near infrared)

0.3 mrad 14)

30 mm @ 100 m, 150 mm @ 500 m, 300 mm @ 1000 m

Scanner Performance

Scanning Mechanism / Scan Pattern Field of View (selectable) Scan Speed (selectable) Angular Step Width A 9 (selectable) between consecutive laser shots

Angle Measurement Resolution

- The following conditions are assumed: target larger than the footprint of the laser beam, average ambient brightness, visibility 23 km, perpendicular angle of leadages.
- Incidence.

 In bright sunlight, the operational range may be considerably shorter and the operational flight altitude may be considerably lower than under an overcast sky.

 Ambiguity to be resolved by post-processing with RIUNITE
- 5)
- softwäre
- software. Reflectivity $\rho \ge 20\%$, 20° FOV, additional roll angle $\pm 5^\circ$ Limitations for range measurement capability does not consider laser safety.

rotating polygon mirror / curved parallel lines

 $\pm 20^{\circ} = 40^{\circ}$

28 - 200 scans/sec

 $0.006^{\circ} \le \Delta \ \vartheta \le 0.042^{\circ}$ (for PRR 600 kHz)

better than 0.001° (3.6 arcsec)

- Accuracy is the degree of conformity of a measured quantity to its actual (true) value
- Accuracy is the degree of conformity of a measured quantity to its actual (frue) value. Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result. One sigma @ 150m range under *RIEGL* test conditions. Rounded values. User selectable.

- If the laser beam hits, in part, more than one target, the laser's pulse power is split accordingly. Thus, the
- achievable range is reduced.

 14) Measured at the 1/e² points. 0.30 mrad corresponds to an increase of 30 cm of beam diameter per 1000 m distance.

Technical Data to be continued on page 5 and 6

GREEN LASER CHANNEL

Range Measurement Performance

Measuring Principle

Hydrography

Typ. Measurement Range Enhanced Depth Performance 3)

Topography (diffusely reflecting targets) Max. Measurement Range 4) 5) 6) 7) natural targets p≥20 % natural targets p≥60 %

Minimum Range Accuracy 8) 10) Precision 9) 10)

Laser Pulse Repetition Rate

Max. Effective Measurement Rate 4)

Echo Signal Intensity Number of Targets per Pulse Laser Wavelength Laser Beam Divergence

Laser Beam Footprint (Gaussian Beam Definition)

time of flight measurement, echo signal digitization, online waveform processing, full waveform recording for post processing

1.5 Secchi depths ¹⁾ for bright ground (p≥80 %) ²⁾ up to 1.7 Secchi depths (averaging 10 waveforms) up to 2.0 Secchi depths (averaging 100 waveforms)

2500 m 3600 m

10 m 25 mm 25 mm up to 700 kHz 4)

200 000 meas./sec (@ 200 kHz PRR) 400 000 meas./sec (@ 400 kHz PRR) 550 000 meas./sec (@ 550 kHz PRR) 700 000 meas./sec (@ 700 kHz PRR)

for each echo signal, high-resolution 16 bit intensity information is provided online waveform processing: up to 9, depending on measurement program 11)

532 nm, green selectable, 0.7 up to 2.0 mrad 12)

100 mm @ 100 m, 500 mm @ 500 m, 1000 mm @ 1000 m 13)

Scanner Performance

Scanning Mechanism / Scan Pattern Field of View (selectable) Scan Speed (selectable) Angular Step Width $\Delta \theta$ (selectable) between consecutive laser shots

Angle Measurement Resolution

The Secchi depth is defined as the depth at which a standard black and white disc deployed into the water is no longer visible to the human eye.

at 650 m flight altitude
Achievable by waveform averaging which is applied in post processing.

Achievable by waveform averaging which is applied in post processing, rounded values

The following conditions are assumed:
target larger than the footprint of the laser beam, average ambient brightness, visibility 23 km, perpendicular angle of incidence, ambiguity to be resolved multiple-time-around processing.

processing. In bright, the operational range may be considerably shorter than under an overcast sky. additional roll angle $\pm 5^\circ$

rotating prism / circular

 $+ 20^{\circ} = 40^{\circ}$

30 - 80 lines per second (lps) 14) $0.02^{\circ} \leq \Delta \ \vartheta \leq 0.052^{\circ}$ (for PRR 550 kHz)

better than 0.001° (3.6 arcsec)

Accuracy is the degree of conformity of a measured quantity to its actual (true) value. Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.

the same result.

10) Topography, one sigma @ 150m range under *RIEGL* test conditions.

11) If the laser beam hits, in part, more than one target, the laser's pulse power is split accordingly. Thus, the achievable range is reduced.

12) Measured at the 1/e² points. 1.0 mrad corresponds to an increase of 100 mm of beam diameter per 100 m distance.

13) The laser beam footprint values correspond to a beam divergence of 1mrad.

14) One line corresponds to a full revolution (360°) of the scan mechanism which can be split into two user-defined segments.

Technical Data to be continued on page 6

RIEGL VQ-880-G II Technical Data

IMU/GNSS Performance 1) 2)

IMU Accuracy 3) Roll, Pitch Heading IMU Sampling Rate Position Accuracy (typ.) horizontal / vertical

Integrated Digital Cameras 4)

RGB and/or IR Camera

Sensor Resolution Sensor Dimensions (diagonal) Focal Length of Camera Lens Field of View (FOV) Interface Data Storage

Data Interfaces

Configuration Scan Data Output

GNSS Interface 6)

General Technical Data

Power Supply Input Voltage Power Consumption

Main Dimensions (flange diameter x height) Weight Humidity Protection Class Scan Head Max. Flight Altitude 8) operating not operating Temperature Range operation / storage

1) The INS configuration of the RIEGL VQ-880-G II Laser Scanning System can be modified to the customer's requirements.
2) The installed IMU is listed neither in the European Export Control List (i.e. Annex 1 of Regulation (EU) No. 2021/821 nor in the Canadian Export Control List. Detailed information on certain cases will be provided on request.
3) One sigma values, no GNSS outages, post-processed during base station data.

 0.0025° 0.005° 200 Hz

 $< 0.05 \, \text{m} / < 0.1 \, \text{m}$

up to 100 MPixel CMOS without FMC⁵⁾ or up to 80 MPixel CCD with FMC⁵⁾ 67.2 mm (medium format) 50 mm approx. 56.2° x 43.7° USB 3.0

separate dedicated data recorder

LAN 10/100/1000 Mbit/sec LAN 10/100/1000 Mbit/sec, High Speed Serial Dual Glass Fiber Link to RIEGL Data Recorder Serial RS-232 interface for data string with GNSS-time information, TTL input for 1 PPS synchronization pulse

18 - 32 V DC typ. 330 W (without IMU/GNSS/cameras) typ. 370 W (with IMU/GNSS/cameras) 7) Ø524 mm x 694 mm (without flange mounted carrying handles) approx. 65 kg (with IMU/GNSS/cameras and optional infrared laser scanner) non condensing IP54, dust and splash-proof

16 500 ft (5 000 m) above Mean Sea Level (MSL) 18 000 ft (5 500 m) above MSL

 0° C up to $+40^{\circ}$ C / -10° C up to $+50^{\circ}$ C

- The camera configuration of the RIEGL VQ-880-G II Laser Scanning System can be modified to the

- Ine carried configuration of the MEGL VQ-880-6 it taset scanning structurer's requirements.

 Forward Motion Compensation to be used for external GNSS receiver

 @ 20°C ambient temperature, 100 kHz PRR, 100 scans/sec

 For standard atmospheric conditions: 1013 mbar, +15°C at sea level

RIEGL Laser Measurement Systems GmbH. Headquarters RIEGL USA Inc., Headquarters North America

RIEGL Japan Ltd. RIEGL China Ltd. RIFGI Australia Ptv I td. RIEGL Canada Inc.

RIEGL UK Ltd. RIEGL Statu. RIEGL Asia Pacific Ltd. RIEGL South America SpA RIEGL Deutschland Vertriebsgesellschaft mbH

